

FET Active Slotline Notch Antennas for Quasi-Optical Power Combining

W. Kent Leverich, Xiao-Dong Wu, and Kai Chang, *Fellow, IEEE*

Abstract—A new active antenna structure with applications in quasi-optical power combining is described. The active antenna combines a slotline FET oscillator with a notch antenna. The new structure was successfully used to create both E-plane and H-plane linear arrays as well as a 2-D array. Preliminary results of radiation patterns and the power combining efficiencies of the arrays are discussed.

I. INTRODUCTION

BECAUSE of their small size, low operating voltage, and high efficiency, solid-state devices are desirable for use as microwave and millimeter-wave power sources. However, when compared with tube devices, solid-state devices provide very low power. To achieve high output power from solid-state sources, the output signal from many devices must be combined [1].

Many different techniques exist for combining the power from solid-state sources. One of the methods is quasi-optical (or spatial) power combining [2]–[8]. Quasi-optical power combining relies on arrays of individual oscillating elements, each of which radiates into free space. The oscillating elements are placed close to each other so that they will couple and will all oscillate at the same frequency. The total power radiated is the sum of the power radiated from all of the individual oscillating elements.

Many different structures can be used for the oscillating elements. Active microstrip patch oscillators using both Gunn diodes and FETs have been reported [3],[5]–[9]. However, microstrip patch antennas have a low impedance matching bandwidth and are difficult to integrate with solid-state devices at high millimeter-wave frequencies.

Notch antennas based on the Vivaldi antenna as described by Gibson [10] offer a good alternative to microstrip patch antennas. Notch antennas have a wide impedance matching bandwidth and allow for easy integration with solid-state devices. Notch antennas in a linear array were connected to oscillators to form a phased array [11]. Also, a notch antenna has been successfully combined with a Gunn and a varactor diode to create an electronically tunable active antenna [12].

An FET is desirable as a solid-state power source because of its low noise and its high efficiency. Previously, an FET was combined with a notch antenna for use as a receiver [13].

Manuscript received September 30, 1992; revised March 11, 1993. This work was supported in part by the U.S. Army Research Office and the Texas Higher Education Coordinating Board Advanced Technology Program.

The author is with the Department of Electrical Engineering, Texas A&M University, College Station, TX 77843-3128.

IEEE Log Number 9211872.

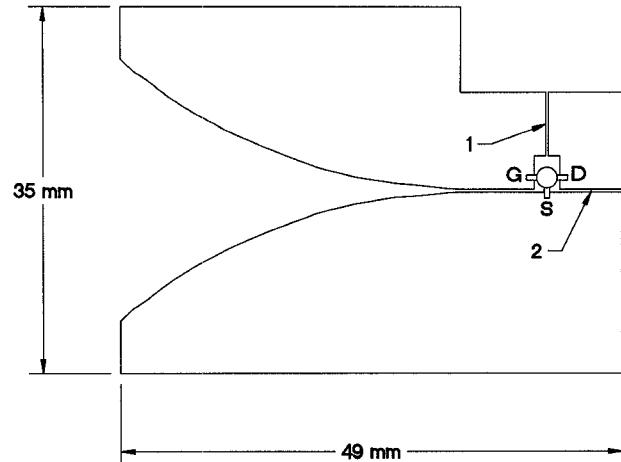
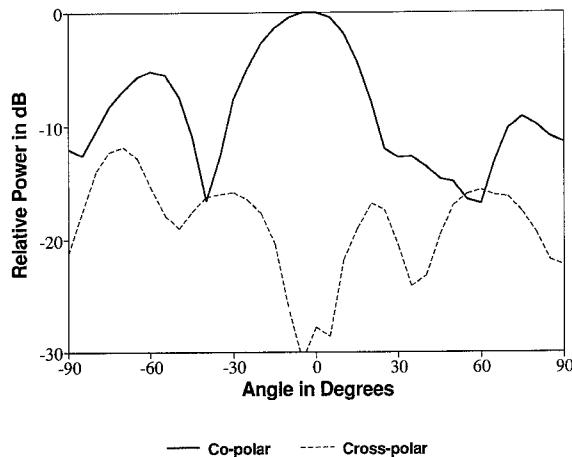
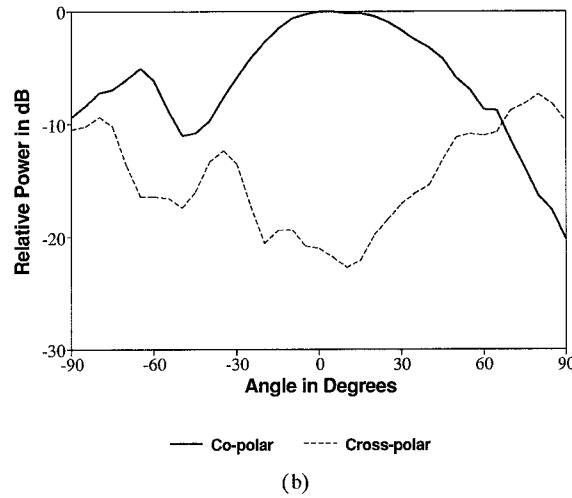


Fig. 1. FET active notch antenna circuit layout.

This paper reports a new circuit structure for an FET active notch antenna which is suitable for use in quasi-optical power combining.


II. DESIGN AND PERFORMANCE OF SINGLE ELEMENT

The layout of the FET active notch antenna is shown in Fig. 1. The circuit was etched on 60 mil thick Duroid 5870 substrate. The substrate's low dielectric constant of $\epsilon_r = 2.3$ allows for efficient radiation from the notch antenna. The transistor used was an Avantek ATF26836 general purpose GaAs FET.


In order for the circuit to oscillate, there must be feedback from the FET's drain to its gate. The slotline labeled 1 in Fig. 1 provides the required feedback. Changing the length and width of this line alters the amount of feedback and can be used to control the frequency of oscillation. The operating frequency of the circuit was varied from 5 to 8 GHz using this technique.

A piece of copper tape measuring 1 cm by 2 cm was placed on the reverse side of the substrate opposite the slotline labeled 2 in Fig. 1. The tape creates a capacitance which acts like a short circuit on the slotline. Moving the tape shifts the position of the short along the slotline, thus altering the impedance and the behavior of the circuit. The circuit can be finely tuned by changing the position of the tape.

The spectrum produced by the circuit was very clean. The center of oscillation was 6.98 GHz. Changing the drain bias voltage level on the power supply resulted in a 2% bias tuning bandwidth.

(a)

(b)

Fig. 2. Radiation patterns for a single element. (a) E-plane. (b) H-plane.

To determine the output power produced by a circuit, a standard gain horn antenna was placed a fixed distance away from the antenna. The power received by the horn was then measured using a power meter. The transmitted power can be calculated from the Friis transmission formula as described in [7], [12]. The gain of the passive notch antenna was measured to be 7 dB. The power transmitted by the active notch antenna was determined to be 8.9 mW with a 7.4% DC-to-RF conversion efficiency.

The E-plane and H-plane radiation patterns of the active antenna were determined by measuring the received power as a function of the angle. The results are shown in Fig. 2(a) and 2(b). The E-plane had a half-power beamwidth of 40°, while the H-plane had a half-power beamwidth of 65°. Crosspolarization levels were low in both planes.

For an active antenna to be useful as an oscillating element in quasi-optical power combining, it must be possible to injection lock the circuit to an external signal. The active notch antenna was successfully injection locked to the output signal from a sweep oscillator. For a locking gain of 26 dB, a 16 MHz locking bandwidth was achieved. The quality factor

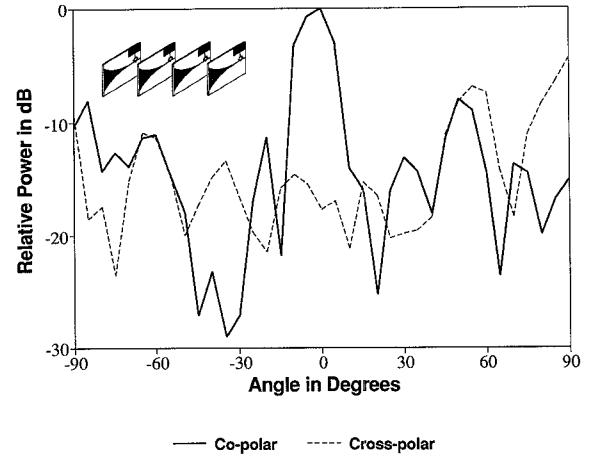
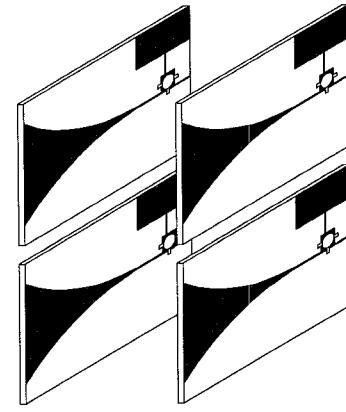



Fig. 3. H-plane radiation pattern for a four element H-plane linear array.

Fig. 4. Arrangement of circuits in 2×2 array.

for the active notch antenna was determined to be 44.9 using an equation from [14].

III. LINEAR ARRAYS

Four of the notch antenna circuits were placed next to each other to create an H-plane linear array. A drawing of the array is shown in the inset of Figure 3. The spacing between the elements of the array was one wavelength. A 5 mm thick piece of plexiglass with $\epsilon_r = 2.6$ was placed a half of a wavelength in front of the array. The plexiglass provided a slight feedback to the array which increased the mutual coupling and aided in injection locking the elements.

To determine the combining efficiency of the array, the power transmitted by each element and by the active array was calculated in a method similar to the single element. When oscillating elements such as these are placed in an array, the antenna gain of the array is increased by a factor approximately equal to the number of elements in the array. Thus, the antenna gain for this array is four times the antenna gain of a single element. The combining efficiency can be calculated using

$$\eta = \left(\frac{P_{\text{array}}}{P_1 + P_2 + P_3 + P_4} \right) \times 100\%. \quad (1)$$

The combining efficiency for the four element H-plane array was measured to be 93%.

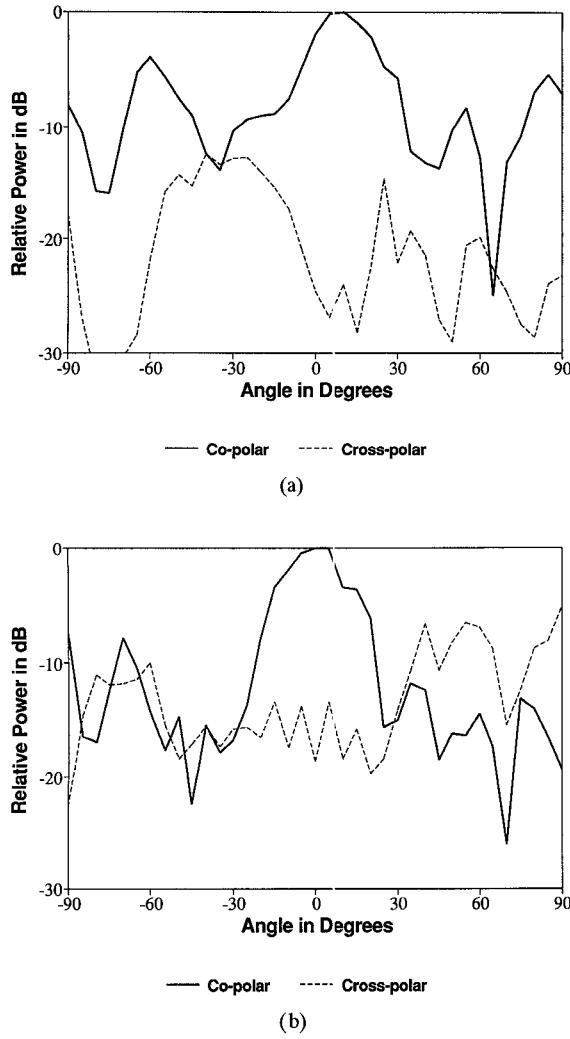


Fig. 5. Radiation patterns for 2×2 array. (a) E-plane. (b) H-plane.

Since the elements are aligned in the H-plane, the E-plane pattern of the array should have little change from the E-plane pattern of single element. The H-plane pattern of the array was substantially narrowed to 15° as shown in Fig. 3. This sharpening of the beam reflects the increased antenna gain of the array.

The four elements were then stacked vertically to create an E-plane linear array. The distance between the elements was one wavelength from centerline to centerline. A piece of plexiglass was again placed a half wavelength in front of the array to facilitate injection locking between the elements. The power radiated by the E-plane array combined with 83% efficiency. In this case, the E-plane pattern was narrow with a beamwidth of 15° resulting from the increased antenna gain of the array. The H-plane pattern was relatively unchanged.

IV. 2-D ARRAY

The four elements were next placed into a 2-D 2×2 array. The arrangement of the elements is shown in Fig. 4. The elements were placed one wavelength apart in both directions, with a piece of plexiglass placed a half wavelength in front of the array. The combining efficiency of the 2-D array was 72%.

Fig. 5(a) and 5(b) show the preliminary results of the E-plane and H-plane patterns of the 2-D array. The beamwidth of the E-plane pattern was 25° , and the beamwidth of the H-plane pattern was 25° . Sharpening of the beam occurred in both planes because the array spanned two dimensions. The beams were not as sharp as the four element linear arrays because there were only two elements in each direction.

V. CONCLUSIONS

A new kind of active antenna circuit has been developed. The circuit combines the advantages of both the FET oscillator and the notch antenna. Both 1-D and 2-D arrays of injection locked elements were demonstrated with good power combining efficiencies. This circuit should find many applications as a quasi-optical power source.

ACKNOWLEDGMENT

The authors would like to thank Mr. L. Fan for his help in fabricating the circuits. The authors would also like to thank Mr. J. A. Navarro for his many valuable suggestions and discussions.

REFERENCES

- [1] K. Chang and C. Sun, "Millimeter-wave power-combining techniques," *IEEE Trans Microwave Theory Tech.*, vol. MTT-31, pp. 91–107, Feb. 1983.
- [2] J. W. Mink, "Quasi-optical power combining of solid-state millimeter-wave sources," *IEEE Trans Microwave Theory Tech.*, vol. MTT-34, pp. 273–279, Feb. 1986.
- [3] R. A. York and R. C. Compton, "Quasi-optical power combining using mutually synchronized oscillator arrays," *IEEE Trans Microwave Theory Tech.*, vol. 39, pp. 1000–1009, June 1991.
- [4] Z. B. Popovic, R. M. Weikle II, M. Kim, K. A. Potter, and D. B. Rutledge, "Bar-grid oscillators," *IEEE Trans Microwave Theory Tech.*, vol. 38, pp. 225–230, Mar. 1990.
- [5] S. Young and K. D. Stephan, "Stabilization and power combining of planar microwave oscillators with an open resonator," in *1987 IEEE MTT-S Int. Microwave Symp. Dig.*, pp. 185–188.
- [6] K. A. Hummer and K. Chang, "Spatial power combining using active microstrip patch antennas," *Microwave and Optical Technology Lets.*, vol. 1, pp. 8–9, Mar. 1988.
- [7] K. Chang, K. A. Hummer, and J. L. Klein, "Experiments on injection locking of active antenna elements for active phased arrays and spatial power combiners," *IEEE Trans Microwave Theory Tech.*, vol. 37, pp. 1078–1084, July 1989.
- [8] J. Birkeland and T. Itoh, "Planar FET oscillators using periodic microstrip patch antennas," *IEEE Trans Microwave Theory Tech.*, vol. 37, pp. 1232–1236, Aug. 1989.
- [9] K. Chang, K. A. Hummer and G. K. Gopalakrishnan, "Active radiating element using FET source integrated with microstrip patch antenna," *Electron. Lett.*, vol. 24, pp. 1347–1348, Oct. 13, 1988.
- [10] P. J. Gibson, "The Vivaldi Aerial," in *Proc. 9th European Microwave Conf.*, Brighton, U.K. 1979, pp. 101–105.
- [11] W. A. Morgan and K. D. Stephan, "Inter-injection locking—a novel phase control technique for monolithic phased arrays," presented at the *12th International Conference on Infrared and Millimeter-Waves*, pp. 81–82, Dec. 1987.
- [12] J. A. Navarro, Y.-H. Shu, and K. Chang, "Broadband electronically tunable planar active radiating elements and spatial power combiners using notch antennas," *IEEE Trans Microwave Theory Tech.*, vol. 40, pp. 323–328, Feb. 1992.
- [13] U. Guttich, "Planar integrated 20 GHz receiver in slotline and coplanar waveguide technique," *Microwave Optical Tech. Lets.*, vol. 2, 404–406, 1989.
- [14] R. Adler, "A study of locking phenomena in oscillators," in *Proc. IRE*, vol. 34, pp. 351–357, June 1946.

W. Kent Leverich was born in Houston, Texas on April 30, 1968. He received the B.S.E.E. and M.S.E.E. from Texas A&M University in 1990 and 1993, respectively.

From August 1988 to August 1990, he worked as a co-operative education student for ISM Corp. in Austin, TX. He worked as a research assistant for the Electromagnetics and Microwave Laboratory at Texas A&M University from June 1991 to July 1993. While there, he conducted research on solid-state microwave circuits for use in quasi-optical power combining. In July 1993, he joined Shason Microwave Corporation in Houston, Texas as a microwave engineer.

Xiao-Dong Wu was born in Henan, China, on May 20, 1962. He received his M.S. and Ph.D. degrees from the University of Electronic Sciences and Technology of China in March 1985 and November 1988 respectively.

From January 1989 to January 1992, he worked for the Microwave Division of the Institute of Semiconductors, Chinese Academy of Sciences where he was a Postdoctoral Fellow. Since February 1992, he has been with the Electrical Engineering Department of Texas A&M University as a Postdoctoral Fellow. His current interests include quasioptical techniques, active antennas, nonlinear modeling and computer-aided design of microwave and millimeter wave passive and active circuits.

Kai Chang (S'75–M'76–SM'85–F'91) received his BSEE degree from the National Taiwan University, Taipei, Taiwan; his MS degree from the State University of New York at Stony Brook; and his PhD degree from the University of Michigan, Ann Arbor, in 1970, 1972, and 1976, respectively.

From 1972 to 1976, he worked for the Microwave Solid-State Circuits Group, Cooley Electronics Laboratory of the University of Michigan as a Research Assistant. From 1976 to 1978, he was employed by Shared Applications, Inc., Ann Arbor, where he worked in computer simulation of microwave circuits and microwave tubes. From 1978 to 1981, he worked for the Electron Dynamics Division, Hughes Aircraft Company, Torrance, CA, where he was involved in the research and development of millimeter-wave solid-state devices and circuits, power combiners, oscillators and transmitters. From 1981 to 1985, he worked for the TRW Electronics and Defense, Redondo Beach, CA, as a Section Head, developing state-of-the-art millimeter-wave integrated circuits and subsystems including mixers, VCO's, transmitters, amplifiers, modulators, upconverters, switches, multipliers, receivers, and transceivers. He joined the Electrical Engineering Department of Texas A&M University in August 1985 as an Associate Professor and was promoted to a Professor in 1988. In January 1990, he was appointed E-Systems Endowed Professor of Electrical Engineering. His current interests are in microwave and millimeter-wave devices and circuits, microwave integrated circuits, microwave optical interactions, and antennas.

Dr. Chang served as the editor of the four-volume *Handbook of Microwave and Optical Components* published by John Wiley & Sons, Inc. in 1989 and 1990. He is the editor of the *Microwave and Optical Technology Letters* and the *Wiley Book Series in Microwave and Optical Engineering*. He has published over 200 technical papers and several book chapters in the areas of microwave and millimeter-wave devices and circuits.

Dr. Chang received the Special Achievement Award from TRW in 1984, the Halliburton Professor Award in 1988, the Distinguished Teaching Award in 1989, and the Distinguished Research Award in 1992 from the Texas A&M University.